Nelson Cortes is an Associate Professor of Kinesiology at George Mason University. The overarching focus of my research is investigating lower extremity biomechanics to develop and optimize injury prevention, and gait retraining interventions that can delay the onset and progression of orthopaedic diseases.
Our interdisciplinary research group develops pre-clinical and clinical research that produces research of consequence. Our state-of-the-art biomechanics laboratory instrumentation (e.g., motion capture, force plates, ultrasound imaging) enables best research practices for basic and translational research. We also conduct community outreach to provide evidence-based interventions to reduce falls in older adults and improve quality of life.
PhD in Human Movement Sciences / Biomechanics, 2010
Old Dominion University
MsSc in Exercise Science / Biomechanics, 2005
Old Dominion University
BSc in Exercise Science, 2001
ULHT (Lisbon, Portugal)
To determine the optimum frequency of feedback for motor learning.
The aim of this proposal is to support the gathering of preliminary data to incorporate in grant proposals to increase the likelihood …
First peak knee abduction moment (KAM) has been associated with the severity and progression of knee osteoarthritis (KOA). Gait modifications, including lateral trunk lean (TL), medial knee thrust (MKT), and reduced foot progression (FP) have decreased KAM. However, their effects on the hip joint are poorly understood. Reduced hip abduction moment has been found to be predictive of KOA progression and has been hypothesized to represent a decreased demand on the hip musculature. Lack of studies investigating changes in hip mechanics as a result of gait modification limits our understanding of their cumulative benefit, therefore, we investigated the effects of TL, MKT, and FP on internal hip abduction moment as well as rate change in net joint reaction force. Using real-time visual biofeedback, five trials were completed for each modification. Each modification target range was individualized to 3-5 SD greater (TL and FP) or lesser (MKT) than the participants mean baseline value. Kinematics and kinetics at the hip and knee were calculated at first peak KAM. Trunk lean and MKT decreased hip abduction moment compared to baseline (p $<$ 0.001). Trunk lean increased rate change in net joint reaction force at both the hip (p $<$ 0.001) and knee (p $<$ 0.001) compared to baseline. Additional research is needed to fully understand the effect of gait modifications in a clinical population, particularly the relationship between hip abduction moments and KOA progression. Although interventions such as MKT and TL can be successful in reducing KAM, their effects on hip abduction moment should be considered before clinical implementation.
BACKGROUND: First peak internal knee abduction moment (KAM) has been associated with knee osteoarthritis. Gait modification including trunk lean, medial knee thrust, and toe-in gait have shown to reduce KAM. Due to heterogeneity between study designs, it remains unclear which strategy is most effective. We compared the effects of these modifications in healthy individuals to determine their effectiveness to reduce KAM, internal knee extension moment (KEM), and medial contact force (MCF). METHODS: Twenty healthy individuals volunteered for this study (26.7+/-4.7years, 1.75+/-0.1m, 73.4+/-12.4kg). Using real-time biofeedback, we collected 10 trials for each modification using individualized gait parameters based on participants’ baseline mean and standard deviation (SD). Two sizes of each modification were tested: 1-3 SD greater (toe-in and trunk lean) or lesser (knee adduction) than baseline for the first five trials and 3-5 SD greater or lesser than baseline for the last five trials. RESULTS: A significant main effect was found for KAM and KEM (p$<$.001). All modifications reduced KAM from baseline by at least five percent; however, only medial knee thrust and small trunk lean resulted in significant KAM reductions. Only medial knee thrust reduced KEM from baseline. MCF was unchanged. CONCLUSION: Medial knee thrust was superior to trunk lean and toe-in modifications in reducing KAM. Subsequent increases in KEM and variation in individual responses to modification suggests that future interventions should be individualized by type and magnitude to optimize KAM reductions and avoid detrimental effects.
Gait modification using real-time biofeedback is a conservative intervention associated with positive outcomes. Results from systematic reviews corroborate the effectiveness of various strategies employing real-time biofeedback for reducing estimated knee joint load. The effects on the nonmodified limb, however, remain unclear. Biomechanical changes to the nonmodified limb were investigated during unilaterally implemented medial knee thrust, lateral trunk lean, and toe-in foot progression. Nineteen healthy participants were recruited. Ten trials were completed for each gait condition including baseline. Assigned magnitude for each gait modification strategy was individualized based on the mean and SD of the gait parameter during baseline. Visual real-time biofeedback was provided. During medial knee thrust, participants’ nonmodified limb presented with increased: first peak medial knee contact force, internal first peak knee extensor moment, as well as knee- and hip-flexion angles at internal first peak knee extensor moment. Observed biomechanical changes are elucidative of the body’s attempt to attenuate increased external loads. These findings may carry significant implications for pathological populations. Load redistribution to the nonmodified side may result in unfavorable long-term outcomes particularly in patients with bilateral diagnosis. Future studies should explore acute and chronic changes in the nonmodified limb of individuals with knee osteoarthritis.